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Two Types of Modular Actuators

• Heavily geared (160:1)
• Onboard brakes

• Large diameter low-gear ratio

• high torque density and

• high back-drivability
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Bag of Behaviors + Sequential 
Composition
Approach to Autonomy 



Sequential Composition

Burridge, Robert R., Alfred A. Rizzi, and Daniel E. Koditschek. 

"Sequential composition of dynamically dexterous robot 

behaviors." The International Journal of Robotics Research

18.6 (1999): 534-555.

Goal point of each controller 
lies within the domain of 
attraction induced by the next 
lower controller. 



Autonomous Telescope Assembly



S. Karumanchi, et al., "Payload Centric Autonomy for In-Space Robotic Assembly of Modular Space 

Structures", Journal of Field Robotics (JFR). 2018;1–17.

Autonomous Telescope Assembly

URS268863



Master Sequence File

The full end-to-end sequence is broken down into subtasks that are 
autonomously executed separately.  Each subtask is specified by a 
command sequence that is stored in a sequence file.  A command 
sequence is hierarchical including subsequences or sequence commands.



Sub-Sequence 1:
Autonomous Sequence to Pick up a Truss From the Truss Dispenser 

~70 Lines

… …

Sequence files are made up of parameterized commands.



What we did not do

• No accurate calibration (precise not accurate)

• No external meterology

• No continuous fiducial tracking

• No long term memory



What we did do

Gated Recognition

• Selected camera’s based on distance and 
angle

• to prevent outliers

Funneling via construction

• big corrections at the beginning

• small corrections at the end
chose behaviors that enabled the above 

by construction

Battery

High Brain 
Computer

Low Brain 
Computer

Wireless 
Router

 2 pairs of
Belly Cameras

2 pairs of
Side Cameras

3 pairs of 
Front Facing

Cameras



Behaviors at the DRC



Proprioceptive feedback
“ego-centric sense of position & movement w.r.t the environment…”

“… of  robot’s body or a manipuland”



Proprioceptive Feedback

1. Why care?

2. How we used it in recent past?

3. Ongoing/Future work
Towards future NASA missions?



• Mobile Manipulation
• Go somewhere and do something

• Do more with less sensing, task specification and a priori information.

• Using feedback to adjust a rough inaccurate task specification 
• Specfically setpoints in SE(3))

Proprioceptive Feedback & Mobile 
Manipulation



Ego-centric Feedback (SE(3))

𝑇𝑅/𝐸𝐸
𝑊 (𝑡 + 𝑑𝑡) = 𝑇𝑅/𝐸𝐸

𝑊 (𝑡)𝑒
 𝝃𝑹𝑑𝑡

Vs.

𝑇𝑅/𝐸𝐸
𝑊 (𝑡 + 𝑑𝑡) = 𝑒

 𝝃𝑾𝑑𝑡𝑇𝑅/𝐸𝐸
𝑊 (𝑡)

Using 
Notation 
from

Murray, R. M., Li, Z., & Sastry, S. S.

A Mathematical Introduction to 

Robotic Manipulation.



• Ego-centric

• can offset requirements on localization performance

• can offset sensitivity to worst case performance of recognition 
tasks

• Effective if correlated with task performance & control inputs 

• Can monitor task and do something about it

• E.g. current feedback + high friction actuators is ineffective
• good signal with control inputs

• poor signal with task performance

Why Proprioceptive Feedback?



Proprioceptive Feedback

1. Why care?

2. How we used it in recent past?

3. Ongoing/Future work
Towards future NASA missions?



Force feedback behaviors
Using force measurements as a direction fix 

(measurements on the tangent space of SE(3))



Single Arm

2014

2015

Dual Arm

Virtual Compliance



Posture control
For Locomotion





Bracing
EE wrench -> torso twist



• Easy to get into brace posture, hard to get out of it (actuator torque overload).
• When to unbrace?

• Using braced EE force measurement to drive torso movement 

2014



DRC Egress
Mobile Manipulation as a Grasping Problem



• 3D Locomotion – Open loop trajectory following + Leg odometry
• Interspersed with force feedback behaviors  to relieve internal force buildup
• Force closure problem



Dual Arm Squeeze



Heavy Payload 
Shifting Contents

34

~40 lbs





Probe and Adapt
Screw theory meets probability theory



One Behavior + N Objects w 
Random First Grasps

37



Unknown Bulky Objects

38

25 kg

14 kg17 kg14 kg

Estimating CoM and Shape of an 
unknown object via physical interaction

Automatic selection of second end effector 
based on iterative inference of CoM and Shape
via force torque measurements only.

1 2

• Dual arm manipulation of unknown bulky objects
• Unknown inertial properties (weight and mass distribution).
• Severe self-occlusions in sensing field-of-view at close proximity.
• Using force torque measurements alone.
• Stable under disturbances from clutter
• Fast convergence with few trials.
• A Probe & Adapt Strategy.



Noisy Exteroception

39



Noisy Exteroception

40
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https://youtu.be/hQ_3PeVhk5E

M. Burkhardt, S. Karumanchi, K. Edelberg, J. Burdick, and P. Backes, "Proprioceptive Inference for Dual-Arm 

Grasping of Bulky Objects Using RoboSimian", IEEE International Conference on Robotics and Automation (ICRA), 

2018

URS272240

https://youtu.be/hQ_3PeVhk5E


Inference Approach

42

Predictive distribution after 
one wrench measurements

Predictive distribution after two wrench measurements

Axes given wrench measurement

 ,|~ rN

N

CoMr





00

 00,|~ N Gaussian
Prior on mean

Gaussian
Likelihood with 
Unknown Mean

& Known Variance

Note: We have axial estimates of CoM 
given wrench measurements. 
Approximating axial likelihoods as long thin 
Gaussians.

Variance is fixed 
and is determined 
based on wrench 
measurements

Observed

Inferred

Random
variable

Fixed
variable

)|( ...1 NCoMrp 

Predictive Distribution Given N 
wrench measurements

Graphical Model

CoM inference in a Bayesian Inference Framework

CoM
Estimate

Shape inference in a Bayesian Inference Framework

Shape Estimate as an 
Implicit Surface 
(Mean shown as a Mesh; 
Color implies Variance)



CoM Estimation

43

Fast Convergence



Enhanced CoM Estimation

44



Under Disturbance



Under Disturbance
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With Kicking



Under Disturbance
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Deformable Objects

48

DEFORMABLE OBJECTS



Deformable Objects
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Prior Particles Posterior Particles

Bayesian 
Update on 

Candidate EE 
goals

Particle Filter

Automatically selecting goals for the second end effector

Next-best touch paradigm



Prior Particles Posterior Particles

Bayesian 
Update on 

Candidate EE 
goals

Particle Filter
Update

(Low variance 
resampling)

Automatically selecting goals for the second end effector

Next-best touch paradigm



Proprioceptive Feedback

1. Why care?

2. How we used it in recent past?

3. Ongoing/Future work
Towards future NASA missions?



Onboard Reasoning
Redundant behaviors & Autoselection



Multi-modal mobility



2018-02-27 8x Strategic Investments MMR 56

Restricted space for multi-modal mobility

Feasibility Graph

SplayScull

Stand Walk 

splay2scull

primitives
postures

Drive

drive2stand

stand2walk

walk2stand
walking

scull2splay

scull2standstand2scull

driving

Motion Primitive Feasibility Graph
(for Multi-modal Mobility )

sculling crawling

stand2drive

inchworming



Offline Testing

3x



Multi-Armed Bandit Problem

• Reinforcement Learning (RL) Approach 
• N discrete actions Unobservable State

• Bounded operation on Feasibility Graph 
• Feasibility verified offline via extensive on-earth experimentation

• Mobility mode selection via online performance monitoring

• Fundamental exploration vs. exploitation tradeoff.
• Use a differential reward signal (expected vs. observed).

• observed = expected → exploit
• observed ≠ expected → explore

59

Reward Signal for Reinforcement Learning 

Units: Meters/Joule

translational progress per unit energy consumption



Future NASA Missions

• Missions with Longer & Longer Comms Delays

• On-board autonomy

• Autonomy is a umbrella term
• Auto Sequencing   

• Fault handling

• Mission Planning

• Determining Science value  

• Negotiating unknown harsh environments



Summary

• Simple behaviors generalize better.

• First Order: 
• Using feedback + optimization to adjust task set-points.
• Does not need perfect localization and prior maps.

• Second Order: 
• Use probing and inference to select task set-points iteratively.

• Third Order: 
• Reason over redundant behaviors via RL on a behavior graph .


